Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Adv Mater ; : e2402452, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691849

RESUMO

The in vivo fate of chemotherapeutic drugs plays a vital role in understanding the therapeutic outcome, side effects, and the mechanism. However, the lack of imaging abilities of drugs, tedious labeling processes, and premature leakage of imaging agents result in loss of fidelity between the drugs and imaging signals. Herein, an amphiphilic polymer is created by copolymerization of a near-infrared-II (NIR-II) fluorophore tracer (T) and an anticancer Pt(IV) prodrug (D) of cisplatin in a hand-holding manner into one polymer chain for the first time. The obtained PolyplatinDT is capable of delivering the drugs and the fluorophores concomitantly at a precise D/T ratio, thereby resulting in tracking the platinum drugs and even readout of them in real-time via NIR-II imaging. PolyplatinDT can self-assemble into nanoparticles, referred to as NanoplatinDT. Furthermore, a caspase-3 cleavable peptide that serves as an apoptosis reporter is attached to NanoplatinDT, resulting in NanoplatinDTR that are capable of simultaneously tracking platinum drugs and evaluating the therapeutic efficacy. Overall, it is reported here the design of the first theranostic polymer with anticancer drugs, drug tracers, and drug efficacy reporters that can work in concert to provide insight into the drug fate and mechanism of action.

2.
Adv Sci (Weinh) ; : e2402208, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704692

RESUMO

Surgical resection remains the mainstream treatment for malignant melanoma. However, challenges in wound healing and residual tumor metastasis pose significant hurdles, resulting in high recurrence rates in patients. Herein, a bioactive injectable hydrogel (BG-Mngel) formed by crosslinking sodium alginate (SA) with manganese-doped bioactive glass (BG-Mn) is developed as a versatile platform for anti-tumor immunotherapy and postoperative wound healing for melanoma. The incorporation of Mn2+ within bioactive glass (BG) can activate the cGAS-STING immune pathway to elicit robust immune response for cancer immunotherapy. Furthermore, doping Mn2+ in BG endows system with excellent photothermal properties, hence facilitating STING activation and reversing the tumor immune-suppressive microenvironment. BG exhibits favorable angiogenic capacity and tissue regenerative potential, and Mn2+ promotes cell migration in vitro. When combining BG-Mngel with anti-PD-1 antibody (α-PD-1) for the treatment of malignant melanoma, it shows enhanced anti-tumor immune response and long-term immune memory response. Remarkably, BG-Mngel can upregulate the expression of genes related to blood vessel formation and promote skin tissue regeneration when treating full-thickness wounds. Overall, BG-MnGel serves as an effective adjuvant therapy to regulate tumor metastasis and wound healing for malignant melanoma.

3.
Front Public Health ; 12: 1399704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737855

RESUMO

Background: Fruits are essential for health, yet their consumption in children is inadequate, with unclear influencing factors. Methods: A cross-sectional study was conducted among students in grades 3-12 in Beijing, China, from September 2020 to June 2021. Fruit consumption in children was surveyed using a self-administered food frequency questionnaire. Additionally, children's food and nutrition literacy and family food environments were assessed using the "Food and Nutrition Literacy Questionnaire for Chinese School-age Children" and the "Family Food Environment Questionnaire for Chinese School-age Children," respectively. Results: Out of 10,000 participating children, 62.5% consumed fruit daily, with a lower frequency among boys (59.3%) compared to girls (65.8%), and among senior students (48.6%) compared to junior (63.6%) and primary students (71.2%). Fruit consumption was positively associated with other healthy foods (vegetables, whole grains, etc.) and negatively with unhealthy foods (sugared soft drinks). Children with higher food and nutrition literacy consumed fruits daily more frequently (82.4% vs. 59.9%, ORs = 2.438, 95%CI: 2.072-2.868). A significant positive correlation was found between children's fruit consumption and a healthy family food environment (66.4% vs. 50.2%, OR = 1.507, 95%CI: 1.363-1.667). Conclusion: The results indicate that individual food and nutrition literacy and family food environment are key positive predictors of children's fruit consumption. Future interventions should focus on educating children and encouraging parents to foster supportive family environments.


Assuntos
Frutas , Humanos , Feminino , Masculino , Estudos Transversais , Criança , Inquéritos e Questionários , Comportamento Alimentar , Pequim , Adolescente , China , Estudantes/estatística & dados numéricos , Letramento em Saúde/estatística & dados numéricos , Família
4.
J Pharm Anal ; 14(3): 389-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618248

RESUMO

Antibody-drug conjugates (ADCs) are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells, thereby attracting considerable attention in precise oncology therapy. Cetuximab (Cet) is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma (cSCC); however, its anti-tumor activity is limited to a single use. Cisplatin (CisPt) shows good curative effects; however, its adverse effects and non-tumor-targeting ability are major drawbacks. In this study, we designed and developed a new ADC based on a new cytotoxic platinum (IV) prodrug (C8Pt(IV)) and Cet. The so-called antibody-platinum (IV) prodrugs conjugates, named Cet-C8Pt(IV), showed excellent tumor targeting in cSCC. Specifically, it accurately delivered C8Pt(IV) into tumor cells to exert the combined anti-tumor effect of Cet and CisPt. Herein, metabolomic analysis showed that Cet-C8Pt(IV) promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells, thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum (IV) prodrugs conjugates.

5.
ACS Nano ; 18(17): 10979-11024, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635910

RESUMO

Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.


Assuntos
Nanomedicina , Humanos , Animais , Nanoestruturas/química , Genômica
6.
Molecules ; 29(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474662

RESUMO

Tussah silk is one of the most widely used wild silks. It is usually dyed with acid dyes, despite the shortcoming of poor wet fastness. Reactive dyeing is a good solution to this problem. In our work, sulfatoethylsulfone (SES), sulfatoethylsulfone/monochlorotriazine (SES/MCT), monochlorotriazine (MCT), and bis(monochlorotriazine) (Bis(MCT)) dyes were used to dye tussah silk. All of these dyes showed lower exhaustion and fixation on tussah silk than on mulberry silk under alkaline conditions. Among them, SES dyes were more applicable, with a fixation of 70-85% (at 4%owf dye) at 90 °C when using sodium bicarbonate as an alkali. SES dyes also showed a rapid fixation speed. The dyeing of tussah silk required lower sodium bicarbonate dosage, the use of more neutral electrolytes, and a higher dye quantity to achieve deep effects compared to mulberry silk. Dyed tussah silk displayed lower apparent color depth and brilliance than dyed mulberry silk. The neutral boiling dyeing of tussah silk with SES dyes exhibited higher exhaustion, higher fixation (82-92% at 4%owf dye), and a slower fixation speed compared with alkaline dyeing. Furthermore, in this dyeing method, SES dyes showed higher and more efficient fixation on tussah silk than on mulberry silk. All dyed tussah silk had excellent color fastness to soaping.


Assuntos
Morus , Seda , Corantes , Bicarbonato de Sódio
7.
Adv Mater ; 36(19): e2312583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302690

RESUMO

Hollow multishelled structures (HoMSs) are attracting great interest in lithium-ion batteries as the conversion anodes, owing to their superior buffering effect and mechanical stability. Given the synthetic challenges, especially elemental diffusion barrier in the multimetal combinations, this complex structure design has been realized in low- and medium-entropy compounds so far. It means that poor reaction reversibility and low intrinsic conductivity remain largely unresolved. Here, a hollow multishelled (LiFeZnNiCoMn)3O4 high entropy oxide (HEO) is developed through integrating molecule and microstructure engineering. As expected, the HoMS design exhibits significant targeting functionality, yielding satisfactory structure and cycling stability. Meanwhile, the abundant oxygen defects and optimized electronic structure of HEO accelerate the lithiation kinetics, while the retention of the parent lattice matrix enables reversible lithium storage, which is validated by rigorous in situ tests and theoretical simulations. Benefiting from these combined properties, such hollow multishelled HEO anode can deliver a specific capacity of 967 mAh g-1 (89% capacity retention) after 500 cycles at 0.5 A g-1. The synergistic lattice and volume stability showcased in this work holds great promise in guiding the material innovations for the next-generation energy storage devices.

8.
Adv Sci (Weinh) ; 11(13): e2309388, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38269649

RESUMO

Cuproptosis, an emerging form of programmed cell death, has received tremendous attention in cancer therapy. However, the efficacy of cuproptosis remains limited by the poor delivery efficiency of copper ion carriers. Herein, copper complex nanoparticles (denoted as Cu(I) NP) are developed that can efficiently deliver copper complex into cancer cells to induce cuproptosis. Cu(I) NP demonstrate stimulus-responsive release of copper complexes, which results in mitochondrial dysfunction and promotes the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), leading to cuproptosis. Notably, Cu(I) NP not only induce cuproptosis, but also elicit robust immune responses to suppress tumor growth. Overall, this study provides a promising strategy for cuproptosis-based cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Cobre , Imunoterapia , Apoptose , Neoplasias/terapia
9.
Biomater Sci ; 12(5): 1079-1114, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38240177

RESUMO

Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.


Assuntos
Hidrogéis , Medicina Regenerativa , Medicina Regenerativa/métodos , Hidrogéis/química , Matriz Extracelular/química , Substâncias Macromoleculares , Polímeros/análise , Engenharia Tecidual/métodos
10.
Adv Mater ; 36(11): e2310456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092007

RESUMO

Pyroptosis, an emerging mechanism of programmed cell death, holds great potential to trigger a robust antitumor immune response. Platinum-based chemotherapeutic agents can induce pyroptosis via caspase-3 activation. However, these agents also enhance cyclooxygenase-2 (COX-2) expression in tumor tissues, leading to drug resistance and immune evasion in pancreatic cancer and significantly limiting the effectiveness of chemotherapy-induced pyroptosis. Here, an amphiphilic polymer (denoted as PHDT-Pt-In) containing both indomethacin (In, a COX-2 inhibitor) and platinum(IV) prodrug (Pt(IV)) is developed, which is responsive to glutathione (GSH). This polymer self-assemble into nanoparticles (denoted as Pt-In NP) that can disintegrate in cancer cells due to the GSH responsiveness, releasing In to inhibit the COX-2 expression, hence overcoming the chemoresistance and amplifying cisplatin-induced pyroptosis. In a pancreatic cancer mouse model, Pt-In NP significantly inhibit tumor growth and elicit both innate and adaptive immune responses. Moreover, when combined with anti-programmed death ligand (α-PD-L1) treatment, Pt-In NP demonstrate the ability to completely suppress metastatic tumors, transforming "cold tumors" into "hot tumors". Overall, the sustained release of Pt(IV) and In from Pt-In NP amplifies platinum-drug-induced pyroptosis to elicit long-term immune responses, hence presenting a generalizable strategy for pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Platina , Ciclo-Oxigenase 2 , Piroptose , Cisplatino/farmacologia , Nanopartículas/uso terapêutico , Polímeros , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
11.
Small Methods ; 8(3): e2300812, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37906035

RESUMO

The development of nucleic acid-based drugs holds great promise for therapeutic applications, but their effective delivery into cells is hindered by poor cellular membrane permeability and inherent instability. To overcome these challenges, delivery vehicles are required to protect and deliver nucleic acids efficiently. Silica nanoparticles (SiNPs) have emerged as promising nanovectors and recently bioregulators for gene delivery due to their unique advantages. In this review, a summary of recent advancements in the design of SiNPs for nucleic acid delivery and their applications is provided, mainly according to the specific type of nucleic acids. First, the structural characteristics and working mechanisms of various types of nucleic acids are introduced and classified according to their functions. Subsequently, for each nucleic acid type, the use of SiNPs for enhancing delivery performance and their biomedical applications are summarized. The tailored design of SiNPs for selected type of nucleic acid delivery will be highlighted considering the characteristics of nucleic acids. Lastly, the limitations in current research and personal perspectives on future directions in this field are presented. It is expected this opportune review will provide insights into a burgeoning research area for the development of next-generation SiNP-based nucleic acid delivery systems.


Assuntos
Nanopartículas , Ácidos Nucleicos , Dióxido de Silício/química , Ácidos Nucleicos/genética , Ácidos Nucleicos/uso terapêutico , Nanopartículas/química
12.
J Colloid Interface Sci ; 656: 450-456, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38006867

RESUMO

Direct methanol fuel cell (DMFC) is hampered by the sluggish methanol oxidation reaction. In this work, we have invited rhodium phosphides (Rh2P) to platinum (Pt) as robust MOR electrocatalyst ascribing the excellent water dissociation capability of Rh2P to generate Pt(OH)ads species to mitigate the CO poisoning. MOR mass activity of Rh2P-Pt/C is enhanced by 2- and 3.5-time with relative to commercial Pt/C and PtRu/C, respectively; additionally, the CO anti-poisoning ability is also boosted by 2.4 folds than Pt/C. The in-situ electrochemical impedance spectroscopy test reveals that the water dissociation is accelerated by Rh2P; moreover, the mutual electronic interplay between Pt and Rh2P contributes to a superior resistance towards electrochemical dissolution and coalescence. The theoretical investigation also indicates that d band center of Pt in Rh2P-Pt is downshifted resulting in a lower CO binding strength.

13.
Bioact Mater ; 33: 341-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38107603

RESUMO

Nitric oxide (NO) enhanced photodynamic therapy (PDT) is a promising approach to overcome drug tolerance and resistance to biofilm but is limited by its short excitation wavelengths and low yield of reactive oxygen species (ROS). Herein, we develop a compelling degradable polymer-based near-infrared II (NIR-II, 1000-1700 nm) photosensitizer (PNIR-II), which can maintain 50 % PDT efficacy even under a 2.6 cm tissue barrier. Remarkably, PNIR-II is synthesized by alternately connecting the electron donor thiophene to the electron acceptors diketopyrrolopyrrole (DPP) and boron dipyrromethene (BODIPY), where the intramolecular charge transfer properties can be tuned to increase the intersystem crossover rate and decrease the internal conversion rate, thereby stabilizing the NIR-II photodynamic rather than photothermal effect. For exerting a combination therapy to eradicate multidrug-resistant biofilms, PNIR-II is further assembled into nanoparticles (NPs) with a synthetic glutathione-triggered NO donor polymer. Under 1064 nm laser radiation, NPs precisely release ROS and NO that triggered by over-expressed GSH in the biofilm microenvironment, thereby forming more bactericidal reactive nitrogen species (RNS) in vitro and in vivo in the mice model that orderly destroy biofilm of multidrug-resistant Staphylococcus aureus cultures from clinical patients. It thus provides a new outlook for destroy the biofilm of deep tissues.

14.
ACS Appl Mater Interfaces ; 15(50): 58873-58887, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38058149

RESUMO

The design of a scaffold that can regulate the sequential differentiation of bone marrow mesenchymal stromal cells (BMSCs) according to the endochondral ossification (ECO) mechanism is highly desirable for effective bone regeneration. In this study, we successfully fabricated a dual-networked composite hydrogel composed of gelatin and hyaluronic acid (termed GCDH-M), which can sequentially release chondroitin sulfate (CS) and magnesium/silicon (Mg/Si) ions to provide spatiotemporal guidance for chondrogenesis, angiogenesis, and osteogenesis. The fast release of CS is from the GCDH hydrogel, and the sustained releases of Mg/Si ions are from poly(lactide-co-glycolide) microspheres embedded in the hydrogel. There is a difference in the release rates between CS and ions, resulting in the ability for the fast release of CS and sustained release of ions. The dual networks between the modified gelatin and hyaluronic acid via covalent bonding and host-guest interactions render the hydrogel with some dynamic feature to meet the differentiation development of BMSCs laden inside the hydrogel, i.e., transforming into a chondrogenic phenotype, further to a hypertrophic phenotype and eventually to an osteogenic phenotype. As evidenced by the results of in vitro and in vivo evaluations, this GCDH-M composite hydrogel was proved to be able to create an optimal microenvironment for embedded BMSCs responding to the sequential guiding signals, which aligns with the rhythm of the ECO process and ultimately boosts bone regeneration. The promising outcome achieved with this innovative hydrogel system sheds light on novel scaffold design targeting bone tissue engineering.


Assuntos
Gelatina , Ácido Hialurônico , Regeneração Óssea , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais , Diferenciação Celular , Hidrogéis/farmacologia , Íons
15.
Opt Express ; 31(24): 40328-40344, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041337

RESUMO

A system and method for non-destructive detection of cracks of different width and depths based on digital speckle interferometry coupled with pulsed laser excitation is introduced and tested. Based on photoacoustic effect, acoustic waves are induced onto the rear of the samples by pumping a pulsed laser beam on it. The generated mechanical wave propagates from the rear surface of the sample to the front while front surface is monitored by speckle interferometry. In order to acquire information about surface deformation, the front surface is illuminated by continuous wave laser and interference are imaged onto the camera as speckle images. After processing the produced fringe patterns, it indicates the presence and location of the cracks in qualitative way. In this study, the system and method mentioned above are validated by detecting medium density fiberboard with simulated cracks. The fringe patterns from areas with or without defects are compared and discussed. Besides, the system and method to distinguish and predict cracks sizes is proposed and validated.

16.
Chemistry ; 29(71): e202302734, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37926848

RESUMO

The development of high-efficient and large-scale non-precious electrocatalysts to improve sluggish reaction kinetics plays a key role in enhancing electrocatalytic nitrogen reduction reaction (NRR) for ammonia production under mild condition. Herein, Fe3 O4 and Fe supported by porous carbon (denoted as Fe/Fe3 O4 /PC-800) composite with a high specific surface area of 1004.1 m2 g-1 was prepared via a simple template method. On one hand, the high surface area of Fe/Fe3 O4 /PC-800 provides a large area to enhance N2 adsorption and promote more protons and electrons to accelerate the reaction, thereby greatly improving the dynamics. On the other hand, mesoporous Fe/Fe3 O4 /PC-800 provides high electrochemically active surface area for promoting the occurrence of catalytic kinetics. As a result, Fe/Fe3 O4 /PC-800 exhibited significantly enhanced NRR performance with an ammonia yield of 31.15 µg h-1 mg-1 cat. and faraday efficiency of 22.26 % at -0.1 V vs. reversible hydrogen electrode (RHE). This study is expected to provide a new strategy for the synthesis of catalysts with large specific area and pave the way for the foundational research in NRR.

17.
Adv Sci (Weinh) ; 10(32): e2305058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37775308

RESUMO

Water splitting, an efficient technology to produce purified hydrogen, normally requires high cell voltage (>1.5 V), which restricts the application of single atoms electrocatalyst in water oxidation due to the inferior stability, especially in acidic environment. Substitution of anodic oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) effectually reduces the overall voltage. In this work, the utilization of iridium single atom (Ir-SA/NC) as robust hydrogen evolution reaction (HER) and HzOR electrocatalyst in 0.5 m H2 SO4 electrolyte is reported. Mass activity of Ir-SA/NC is as high as 37.02 A mgIr -1 at overpotential of 50 mV in HER catalysis, boosted by 127-time than Pt/C. Besides, Ir-SA/NC requires only 0.39 V versus RHE to attain 10 mA cm-2 in HzOR catalysis, dramatically lower than OER (1.5 V versus RHE); importantly, a superior stability is achieved in HzOR. Moreover, the mass activity at 0.5 V versus RHE is enhanced by 83-fold than Pt/C. The in situ Raman spectroscopy investigation suggests the HzOR pathway follows *N2 H4 →*2NH2 →*2NH→2N→*N2 →N2 for Ir-SA/NC. The hydrazine assisted water splitting demands only 0.39 V to drive, 1.25 V lower than acidic water splitting.

18.
Appl Opt ; 62(17): 4530-4535, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707147

RESUMO

Digital holography has transformative potential in measuring stacked-chip microstructures due to its noninvasive, single-shot, full-field characteristics. However, uncertainties in reconstruction distance inevitably lead to resolving blur and reconstruction distortion. Herein, we propose a phase-based reconstruction optimization method that consists of a phase-evaluation function and a structured surface-characterization model. Our proposed method involves setting a reconstruction distance range, obtaining phase information using sliced numerical reconstruction, and optimizing the reconstruction distance by finding the extreme value of the function, which identifies the focal plane of the reconstructed image. The structure of the surface topography is then characterized using the characterization model. We perform simulations of the recording, reconstruction, and characterization to verify the effectiveness of the proposed method. To further demonstrate the approach, a simple holographic recording system is constructed to measure a standard resolution target, and the measurement results are compared with a commercial instrument. The simulation and experiment demonstrate, respectively, 31.16% and 34.41% improvement in step-height characterization accuracy.

19.
Nat Commun ; 14(1): 5350, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660174

RESUMO

Tumor metastases are considered the leading cause of cancer-associated deaths. While clinically applied drugs have demonstrated to efficiently remove the primary tumor, metastases remain poorly accessible. To overcome this limitation, herein, the development of a theranostic nanomaterial by incorporating a chromophore for imaging and a photosensitizer for treatment of metastatic tumor sites is presented. The mechanism of action reveals that the nanoparticles are able to intervene by local generation of cellular damage through photodynamic therapy as well as by systemic induction of an immune response by immunotherapy upon inhibition of the mTOR signaling pathway which is of crucial importance for tumor onset, progression and metastatic spreading. The nanomaterial is able to strongly reduce the volume of the primary tumor as well as eradicates tumor metastases in a metastatic breast cancer and a multi-drug resistant patient-derived hepatocellular carcinoma models in female mice.


Assuntos
Neoplasias Hepáticas , Fotoquimioterapia , Feminino , Animais , Camundongos , Medicina de Precisão , Transdução de Sinais , Serina-Treonina Quinases TOR , Imunoterapia
20.
Opt Express ; 31(19): 31563-31573, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710671

RESUMO

Holography represents an enabling technology for next-generation virtual and augmented reality systems. However, it remains challenging to achieve both wide field of view and large eyebox at the same time for holographic near-eye displays, mainly due to the essential étendue limitation of existing hardware. In this work, we present an approach to expanding the eyebox for holographic displays without compromising their underlying field of view. This is achieved by utilizing a compact 2D steering mirror to deliver angular-steering illumination beams onto the spatial light modulator in alignment with the viewer's eye movements. To facilitate the same image for the virtual objects perceived by the viewer when the eye moves, we explore an off-axis computational hologram generation scheme. Two bench-top holographic near-eye display prototypes with the proposed angular-steering scheme are developed, and they successfully showcase an expanded eyebox up to 8 mm × 8 mm for both VR- and AR-modes, as well as the capability of representing multi-depth holographic images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA